Nanoscale Heterogeneity of Multilayered Si Anodes with Embedded Nanoparticle Scaffolds for Li‐Ion Batteries

نویسندگان

  • Marta Haro
  • Vidyadhar Singh
  • Stephan Steinhauer
  • Evropi Toulkeridou
  • Panagiotis Grammatikopoulos
  • Mukhles Sowwan
چکیده

A new approach on the synthesis of Si anodes for Li-ion batteries is reported, combining advantages of both nanoparticulated and continuous Si films. A multilayered configuration prototype is proposed, comprising amorphous Si arranged in nanostructured, mechanically heterogeneous films, interspersed with Ta nanoparticle scaffolds. Particular structural features such as increased surface roughness, nanogranularity, and porosity are dictated by the nanoparticle scaffolds, boosting the lithiation process due to fast Li diffusion and low electrode polarization. Consequently, a remarkable charge/discharge speed is reached with the proposed anode, in the order of minutes (1200 mAh g-1 at 10 C). Moreover, nanomechanical heterogeneity self-limits the capacity at intermediate charge/discharge rates; as a consequence, exceptional cycleability is observed at 0.5 C, with 100% retention over 200 cycles with 700 mAh g-1. Higher capacity can be obtained when the first cycles are performed at 0.2 C, due to the formation of microislands, which facilitate the swelling of the active Si. This study indicates a method to tune the mechanical, morphological, and electrochemical properties of Si electrodes via engineering nanoparticle scaffolds, paving the way for a novel design of nanostructured Si electrodes for high-performance energy storage devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scalable processing and capacity of Si microwire array anodes for Li ion batteries

UNLABELLED Si microwire array anodes have been prepared by an economical, microelectronics compatible method based on macropore etching. In the present report, evidence of the scalability of the process and the areal capacity of the anodes is presented. The anodes exhibit record areal capacities for Si-based anodes. The gravimetric capacity of longer anodes is comparable to the one of shorter a...

متن کامل

Stable Cycling of SiO2 Nanotubes as High-Performance Anodes for Lithium-Ion Batteries

Herein, SiO2 nanotubes have been fabricated via a facile two step hard-template growth method and evaluated as an anode for Li-ion batteries. SiO2 nanotubes exhibit a highly stable reversible capacity of 1266 mAhg(-1) after 100 cycles with negligible capacity fading. SiO2 NT anodes experience a capacity increase throughout the first 80 cycles through Si phase growth via SiO2 reduction. The holl...

متن کامل

High-rate amorphous SnO2 nanomembrane anodes for Li-ion batteries with a long cycling life.

Amorphous SnO2 nanomembranes as anodes for lithium ion batteries demonstrate a long cycling life of 1000 cycles at 1600 mA g(-1) with a high reversible capacity of 854 mA h g(-1) and high rate capability up to 40 A g(-1). The superior performance is because of the structural features of the amorphous SnO2 nanomembranes. The nanoscale thickness provides considerably reduced diffusion paths for L...

متن کامل

Free-standing Ag/C coaxial hybrid electrodes as anodes for Li-ion batteries.

Free-standing coaxially structured Ag/carbon hybrid electrodes were prepared as potential anodes for micro-Li-ion batteries, which show excellent electrochemical performance, being essentially due to the beneficial effect of the unique structure, i.e. the Ag-core enhances the flexibility and electrochemical kinetics, while the carbon shell buffers volumetric change during cycling.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2017